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Note: B,(A) = {z € X : d(z,a) < r}. C[0,1] is the set of continous real valued functions on [0, 1] with
sup metric.

Q1. (15 marks) Determine the nature of the critical points of f(z,y) = 23+6xy+3y*—9z.

Q2.

Solution: Consider the partial derivatives:
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The critical points are given by

0
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= The critical points are (—1,1) and (3, —3).

The Hessian is given by fu.fy, — f2, = 36(xz — 1).

zy
At (3,—3), the Hessian and f,, are positive and hence the function attains local

minima.
At (—1,1), the Hessian is negative and hence the function attains local maxima.

(10+5 marks) Let f:R* — R be the function defined by

3 i@y #(0,0)
J@.y) = {0 Tk (,y) = (0,0).

~—

(a) Compute the partial derivatives of f at (0,0).
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(b) Prove that f is not differentiable at (0, 0).
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Q3.

Q4.

Solution: Suppose the function is differentiable at the origin then the partial
derivatives must exist and be continuous at the origin.
Note that the partial derivatives at (z,y) # (0,0) are given by

of 2213
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Note that along the line y = mux, % = % and % = % both of which
does not go to zero (for m # 1). Hence the partial derivatives are not continuous.

Thus the function is not differentiable at the origin.

(15 marks) Let U be an open subset of R and let f : U — R be a differentiable
function. Let a,b € U such that U contains the line segment L from a to b (that
is, L={(1—t)a+tb:t€[0,1]} C U). Prove that there is some ¢ € L such that

f() = fla) = f'(e)(b - a).

Solution: This is Mean value theorem on higher dimensional spaces.

Consider the function F' : [0,1] — R defined as F'(t) = f(a + t(b — a)). Since f is
differentiable, we have f(z+h) = f(x)+ D, f(h)+ |h|E.(h), where D, f denotes the
differential linear map of f at x and E,(h) goes to zero as h goes to zero. For each
h = (hy, -+ ,hy), since D, f is a linear map, as h going to zero, we have h; goes to
zero for all i. Thus T,(h) = > 7, h/T,(e;) goes to zero which imples f is continuous
and hence F' is continuous and differentiable.

Also by the chain rule, F'(t) = f'(a +t(b— a))(b — a). By the mean value theorem
on single variable, there exists h € [0,1] such that F(1) — F(0) = F'(h), that is,
fb) — fla) = f'(a+ h(b—a))(b—a). Since h € [0,1], we have a + h(b —a) € L.
Hence the proof.

(10 marks) Let a,h € R",a + h € B,(a) and let f : B.(a) — R be a C? function.
Define the real valued function n on [0, 1] by n(t) = f(a + th),t € [0,1]. Compute
the second order derivative of 7.

Solution: We use Chain rule:
n'(t) = Df(a+th).h
= (Ohf(a+th)---Ouf(a+th)).(hy--- hn)lt

= Y _0if(a+thh;,
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where 0; f (o) = o(x)
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Q5. (10 marks) Let X be a metric space. Prove that the closure of a connected subspace
of X is also connected.

Solution: Suppose E is a connected subspace of X and E is not a connected subspace
of X. There exists two sets A and B such that E = AUBand ANB=0=ANB.
Without loss of generality, let A be a non-empty set. Suppose a € A C E. Since
AN B = (, there exists a neighborhood U such that BN U = (. Also since a € F
there exists z € ENU and © ¢ B. Hence v € EN A # (). Since A and B are
separated, £ N A and N B are separated. Thus we have £ = AU B. Since A is
non-empty and F is connected, B is an empty set. Hence the connectedness of E.

Q6. (10 marks) Prove that a subset of R is compact if and only if it is closed and bounded.

Solution: Suppose E is a compact subset of R.

If F is unbounded, then there is an infinite bounded open cover. By compactness
of F, there is a finite bounded open cover. Union of bounded sets is bounded and
hence F must be bounded. If F is not closed, that is, if x is a limit point of F and
does not belong to F, then R\(z — ¢,z + ¢€) for ¢ > 0 forms an open cover of E.
By compactness of E, there is a finite cover {R\(z = €;,x + €;)}i=1,... n for E. Let
§ = min{e}. (x — 0,2+ )N E = implies that x is not a limit point. Hence E is
closed.

Conversely, suppose E is closed and bounded. Hence there exists an interval [a, 0]
such that E C [a,b] and the complement E° is open. Let O be an open cover for E.
Then O U E€ is also a open cover of [a, b]. It is enough to prove that [a, b] has a finite
subcover.

Consider S = {x € [a,b] : O U E* has a finite subcover for [a,x]}. Since O U E° is
a cover for {a}, a € S and S is non-empty. Let s = supS. Since [a,b] is closed,
s € [a,b]. Let U € O U E° be an open set such that (s —€,s +¢) C U. By the
definition of s, let x € S such that > s —e. Hence there exists a finite subcover
O C OUE® of [a,z]. Let £ = min{z +¢,b}. But by definition of s, b < s+ €. Hence
O U U is finite subcover of [a, b).



Q7. (10 marks) Let X be a compact metric space and f : X — X an isometry. Prove

Q8.

Qo.

that f(X) = X.

Solution: f is an isometry, that is, d(f(x), f(y)) = d(z,y). Hence f is contin-
uous.Suppose f(X) C X and f(X) # X. Let zg € X but 2o ¢ f(X). Let
0 < e < d(xg, f(X)). Since {B.(x)}sex is an open cover of X, by compactness
there is a finite subcover {B¢(z;)}iz1,.. nz;ex for X and N be the least number for
such a cover to exist. Let j € {1,---, N such that zy € B.(z;). By the choice of e,
B.(x;) does not intersect f(X). By the continuity of f there are N — 1 e—covers of
f(X) and hence for X which contradicts the minimality of N. Hence f(X) = X.

(7+8 marks)

(a) Let ¢t € [0,1]. Prove that the evaluation map ev; : C[0,1] — R defined by
ev(f) = f(t), f € C[0,1] is continous.

Solution: Recall that the norm in C[0, 1] we consider is || f||o = sup|f(t)|. Let
e > 0 and t € [0,1] be given. Let {f,} be a sequence in C0,1] converging
to f € C]0,1], that is, for every € > 0, there exists a large N € N such that
| fn— fll < eforalln>N.

leve(fa) — evi(H) = 1£a(t) = SO < sup [fu(t) = J(O)] = |lfo = flloo < €V 2 N.

Hence the continuity of eu;.

(b) Let K be a closed subset of R and Sk := {f € C[0,1] : f([0,1]) C K}. Use part
(a) to prove that Sk is a closed subset of C[0, 1].

Solution: Let f, be a sequence in Sk and converge to f. Let t € [0,1] be
arbitrary. Then ev,(f,) € K for all n. Since f, converges to f; by (a), ev; is
continuous, ev,(f,,) is a sequence converging to ev,(f). Also, since K is a closed
subset of R, ev;(f) € K. Since this is true for all ¢, we have f € Sk.

(8+7 marks) Let X be a metric space. Prove the following:

(a) The union of two intersecting connected subspaces of X is connected.

Solution: Suppose E and F' are two intersecting connected subspaces of a metric
space X and suppose E U F' is not connected. Then there exists two non-
empty disjoint sets A, B such that EUF = AUB, ANB =0 = AN B.
Let z € EN F. Without loss of generality, let + € A. Let y € B, since B
is non-empty. Without loss of generality, let y € E. Then z,y € E implies
ENA=FENA#0#ENB=ENDwhere A= ENAand B=ENB. But by
connectedness of E, E = AU B implies either ENA =0 or EN B = (). Thus
we contradict to our hypothesis.



(b) The union of two compact subspaces of X is compact.

Solution: Let E,F be two compact subsets of the metric space X. Suppose
{Uu}« is an open cover of £ U F and hence an open cover of both E and F.
By compactness of E and F, let {U;};=1... n, and {V;}i=1... n, be the respective
finite subcovers of {U,} for £ and F. Then consider {U;, V;}iz1,...ny je1,Np- 1t
is a finite subcover of £ U F'. Hence the proof.



