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Note: Br(A) = {x ∈ X : d(x, a) < r}. C[0, 1] is the set of continous real valued functions on [0, 1] with

sup metric.

Q1. (15 marks) Determine the nature of the critical points of f(x, y) = x3+6xy+3y2−9x.

Solution: Consider the partial derivatives:

∂f

∂x
= 3x2 + 6y − 9

∂f

∂y
= 6x+ 6y

fxx =
∂2f

∂x2
= 6x, fyy =

∂2f

∂y2
= 6, and fxy =

∂2f

∂x∂y
= 6.

The critical points are given by

∂f

∂x
= 3x2 + 6y − 9 = 0

∂f

∂y
= 6x+ 6y = 0

=⇒ The critical points are (−1, 1) and (3,−3).

The Hessian is given by fxxfyy − f 2
xy = 36(x− 1).

At (3,−3), the Hessian and fxx are positive and hence the function attains local
minima.
At (−1, 1), the Hessian is negative and hence the function attains local maxima.

Q2. (10+5 marks) Let f : R2 → R be the function defined by

f(x, y) =

{
x2y
x2+y2

if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0).

(a) Compute the partial derivatives of f at (0, 0).

∂f(0, 0)

∂x
= lim

h→0

h2.0
h2+0
− 0

h
= lim

h→0

0

h
= 0

∂f(0, 0)

∂y
= lim

h→0

0.h
h2+0
− 0

h
= lim

h→0

0

h
= 0

(b) Prove that f is not differentiable at (0, 0).
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Solution: Suppose the function is differentiable at the origin then the partial
derivatives must exist and be continuous at the origin.
Note that the partial derivatives at (x, y) 6= (0, 0) are given by

∂f

∂x
=

2xy3

(x2 + y2)2

∂f

∂y
=

x2(x2 − y2)
(x2 + y2)2

Note that along the line y = mx, ∂f
∂x

= 2m3

(1+m2)2
and ∂f

∂y
= 1−m2

(1+m2)2
both of which

does not go to zero (for m 6= 1). Hence the partial derivatives are not continuous.
Thus the function is not differentiable at the origin.

Q3. (15 marks) Let U be an open subset of Rn and let f : U → R be a differentiable
function. Let a, b ∈ U such that U contains the line segment L from a to b (that
is, L = {(1 − t)a + tb : t ∈ [0, 1]} ⊂ U). Prove that there is some c ∈ L such that
f(b)− f(a) = f ′(c)(b− a).

Solution: This is Mean value theorem on higher dimensional spaces.
Consider the function F : [0, 1] → R defined as F (t) = f(a + t(b − a)). Since f is
differentiable, we have f(x+h) = f(x) +Dxf(h) + |h|Ex(h), where Dxf denotes the
differential linear map of f at x and Ex(h) goes to zero as h goes to zero. For each
h = (h1, · · · , hn), since Dxf is a linear map, as h going to zero, we have hi goes to
zero for all i. Thus Tx(h) =

∑n
i=1 hiTx(ei) goes to zero which imples f is continuous

and hence F is continuous and differentiable.
Also by the chain rule, F ′(t) = f ′(a + t(b− a))(b− a). By the mean value theorem
on single variable, there exists h ∈ [0, 1] such that F (1) − F (0) = F ′(h), that is,
f(b) − f(a) = f ′(a + h(b − a))(b − a). Since h ∈ [0, 1], we have a + h(b − a) ∈ L.
Hence the proof.

Q4. (10 marks) Let a, h ∈ Rn, a + h ∈ Br(a) and let f : Br(a) → R be a C2 function.
Define the real valued function η on [0, 1] by η(t) = f(a + th), t ∈ [0, 1]. Compute
the second order derivative of η.

Solution: We use Chain rule:

η′(t) = Df(a+ th).h

= (∂1f(a+ th) · · · ∂nf(a+ th)).(h1 · · ·hn)t

=
n∑
i=1

∂if(a+ th)hi,
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where ∂if(x0) = ∂f(x)
∂xi

∣∣∣∣
x=x0

. Hence

η′(t+ ε)− η′(t) =
n∑
i=1

(
∂if(a+ (t+ ε)h)− ∂if(a+ th)

)
hi

=⇒ η′′(t) =
n∑
i=1

n∑
j=1

∂ijf(a+ th)hihj,

where ∂ijf(x0) = ∂2f(x)
∂xi∂xj

∣∣∣∣
x=x0

Q5. (10 marks) Let X be a metric space. Prove that the closure of a connected subspace
of X is also connected.

Solution: Suppose E is a connected subspace of X and E is not a connected subspace
of X. There exists two sets A and B such that E = A ∪B and A ∩B = ∅ = A ∩B.
Without loss of generality, let A be a non-empty set. Suppose a ∈ A ⊂ E. Since
A ∩ B = ∅, there exists a neighborhood U such that B ∩ U = ∅. Also since a ∈ E
there exists x ∈ E ∩ U and x /∈ B. Hence x ∈ E ∩ A 6= ∅. Since A and B are
separated, E ∩ A and E ∩ B are separated. Thus we have E = A ∪ B. Since A is
non-empty and E is connected, B is an empty set. Hence the connectedness of E.

Q6. (10 marks) Prove that a subset of R is compact if and only if it is closed and bounded.

Solution: Suppose E is a compact subset of R.
If E is unbounded, then there is an infinite bounded open cover. By compactness
of E, there is a finite bounded open cover. Union of bounded sets is bounded and
hence E must be bounded. If E is not closed, that is, if x is a limit point of E and
does not belong to E, then R\(x − ε, x + ε) for ε > 0 forms an open cover of E.
By compactness of E, there is a finite cover {R\(x = εi, x + εi)}i=1,··· ,N for E. Let
δ = mini{εi}. (x− δ, x+ δ) ∩ E = ∅ implies that x is not a limit point. Hence E is
closed.

Conversely, suppose E is closed and bounded. Hence there exists an interval [a, b]
such that E ⊂ [a, b] and the complement Ec is open. Let O be an open cover for E.
Then O∪Ec is also a open cover of [a, b]. It is enough to prove that [a, b] has a finite
subcover.
Consider S = {x ∈ [a, b] : O ∪ Ec has a finite subcover for [a, x]}. Since O ∪ Ec is
a cover for {a}, a ∈ S and S is non-empty. Let s = supS. Since [a, b] is closed,
s ∈ [a, b]. Let U ∈ O ∪ Ec be an open set such that (s − ε, s + ε) ⊂ U . By the
definition of s, let x ∈ S such that x > s − ε. Hence there exists a finite subcover

Õ ⊂ O ∪Ec of [a, x]. Let x̃ = min{x+ ε, b}. But by definition of s, b < s+ ε. Hence

Õ ∪ U is finite subcover of [a, b].
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Q7. (10 marks) Let X be a compact metric space and f : X → X an isometry. Prove
that f(X) = X.

Solution: f is an isometry, that is, d(f(x), f(y)) = d(x, y). Hence f is contin-
uous.Suppose f(X) ⊂ X and f(X) 6= X. Let x0 ∈ X but x0 /∈ f(X). Let
0 < ε < d(x0, f(X)). Since {Bε(x)}x∈X is an open cover of X, by compactness
there is a finite subcover {Bε(xi)}i=1,··· ,N,xi∈X for X and N be the least number for
such a cover to exist. Let j ∈ {1, · · · , N such that x0 ∈ Bε(xj). By the choice of ε,
Bε(xj) does not intersect f(X). By the continuity of f there are N − 1 ε−covers of
f(X) and hence for X which contradicts the minimality of N . Hence f(X) = X.

Q8. (7+8 marks)

(a) Let t ∈ [0, 1]. Prove that the evaluation map evt : C[0, 1] → R defined by
evt(f) = f(t), f ∈ C[0, 1] is continous.

Solution: Recall that the norm in C[0, 1] we consider is ‖f‖∞ = supt|f(t)|. Let
ε > 0 and t ∈ [0, 1] be given. Let {fn} be a sequence in C[0, 1] converging
to f ∈ C[0, 1], that is, for every ε > 0, there exists a large N ∈ N such that
‖fn − f‖ < ε for all n ≥ N .

|evt(fn)− evt(f)| = |fn(t)− f(t)| ≤ sup
t
|fn(t)− f(t)| = ‖fn − f‖∞ < ε ∀n ≥ N.

Hence the continuity of evt.

(b) Let K be a closed subset of R and SK := {f ∈ C[0, 1] : f([0, 1]) ⊂ K}. Use part
(a) to prove that SK is a closed subset of C[0, 1].

Solution: Let fn be a sequence in SK and converge to f . Let t ∈ [0, 1] be
arbitrary. Then evt(fn) ∈ K for all n. Since fn converges to f ; by (a), evt is
continuous, evt(fn) is a sequence converging to evt(f). Also, since K is a closed
subset of R, evt(f) ∈ K. Since this is true for all t, we have f ∈ SK .

Q9. (8+7 marks) Let X be a metric space. Prove the following:

(a) The union of two intersecting connected subspaces of X is connected.

Solution: Suppose E and F are two intersecting connected subspaces of a metric
space X and suppose E ∪ F is not connected. Then there exists two non-
empty disjoint sets A,B such that E ∪ F = A ∪ B, A ∩ B = ∅ = A ∩ B.
Let x ∈ E ∩ F . Without loss of generality, let x ∈ A. Let y ∈ B, since B
is non-empty. Without loss of generality, let y ∈ E. Then x, y ∈ E implies
E ∩ Ã = E ∩A 6= ∅ 6= E ∩B = E ∩ B̃ where Ã = E ∩A and B̃ = E ∩B. But by
connectedness of E, E = Ã ∪ B̃ implies either E ∩ Ã = ∅ or E ∩ B̃ = ∅. Thus
we contradict to our hypothesis.
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(b) The union of two compact subspaces of X is compact.

Solution: Let E,F be two compact subsets of the metric space X. Suppose
{Uα}α is an open cover of E ∪ F and hence an open cover of both E and F .
By compactness of E and F , let {Ui}i=1,··· ,N1 and {Vi}i=1,··· ,N2 be the respective
finite subcovers of {Uα} for E and F . Then consider {Ui, Vj}i=1,···N1,j=1,···N2 . It
is a finite subcover of E ∪ F . Hence the proof.

5


